

Rudolf Och SPLINES QUALITY ASSURANCE

learn teach consult

The author

Graduate Engineer (Dipl. Ing., FH) Rudolf Och was born in Bamberg, Germany in 1951. After graduating in mechanical engineering he founded FRENCO GmbH in Nuremberg, Germany in 1978. In the beginning, the company only engaged in the development and manufacture of spline gauges. Over the years, however, the business was extended to include the full spectrum of gear and spline metrology. This development is supported by numerous inventions.

The author was a member of the American Standards Institute for Splines ANSI and has been Chairman of the German standards committee AA 2.1 since 1993. During the chairmanship, the German term for spline (Passverzahnung) was officially introduced and all relevant German standards were revised. The international standard ISO 4156 was also completely revised under German leadership by the responsible standards committee ISO/TC 14.

1st Edition 2008 Self-published by Frenco GmbH

© Rudolf Och

All rights including those of the translation, reprint and reproduction of the book are reserved.

Rudolf Och

Splines

Volume 1

Quality Assurance

Self-published Version September 2008 © Rudolf Och FRENCO GmbH

Preface

Splines are a difficult technical "marginal area" within drive technology. They are neither addressed during vocational training nor in degree courses. Experts in the matter are accordingly few and far between. Quality assurance of splines requires an additional field of knowledge, which further complicates the subject matter. We have used many pictures to support the explanations in order to ensure the topic is as easy to understand as possible.

This book is a compilation of individual documentations, which were compiled over a period of 30 years from the author's experiences. It was revised as a whole before print and reflects the status quo of standardisation.

No responsibility is accepted for the accuracy of the information in this book. It must be noted that technical developments are a continuous process and knowledge, standards and rules are subject to constant changes.

June 2008, Rudolf Och

Contents

1. Spline Basics (formerly OFL 01)	9
 The function of Gears The function of Splines Splines and spline flank forms 	9 9 11
1.3.1. Straight-sided flanks1.3.2. Serration flanks1.3.3. Involute flanks	11 12 13
 1.3.3.1. Side fit 1.3.3.2. Major diameter fit 1.3.3.3. Different pressure angles of side fit splines 1.3.3.4. Geometry of tooth tip and root 1.3.3.5. Diameters 	13 14 15 15 16
1.4. Splines with side fit	16
 1.4.1. Fit clearance 1.4.2. Contact area ratio 1.4.3. Effective spline 1.4.4. System of fits "actual - effective" 1.4.5. Tolerance chart 	16 17 17 19 23
2. Quality Assurance - Summary (formerly OFS 10)	27
2.1. Summary	27
2.1.1. Different types of splines2.1.2. Most important standards2.1.3. Quality features	27 28 28
2.2. Size inspection and fit clearance	29
 2.2.1. Involute splines, side fit 2.2.2. Involute splines, major diameter fit 2.2.3. Serration splines (always side fit) 2.2.4. Straight-sided splines (always major diameter fit) 2.2.5. Inspection methods and measuring instruments for size and backlash 	29 31 31 33 34
2.3. Form inspection	37
2.3.1. Summary2.3.2. Influence of position2.3.3. Measurement methods and instruments for the form inspection	37 38 38
2.4. Inspection of position2.5. Special combination measuring instruments	40 41
3. Spline Inspection using Measuring Machines (formerly OFD 13)	43
 3.1. General information 3.2. Actual dimension 3.3. Effective dimension 3.4. Contour (form deviation) 3.5. Position 	43 43 45 47 48

4. Qual	ity Management (formerly OFS 01)	51
4.1. To	erance limits	51
4.2. Ac	tual dimensions	56
4.3. Ac	tual dimensions in the tolerance chart	57
4.3.1.	Actual dimensions within tolerance	57
4.3.2.	Actual dimensions outside tolerance	58
4.4. Su	perposition of individual deviations	59
4.5. Eff	ective spline	67
4.6. Dis	persion of the actual true dimensions	70
5. Inspe	ection Methods Actual and Effective (formerly OFS 04)	77
5.1. Ins	pecting the actual dimension	77
5.1.1.	Measurement of the base tangent length	77
5.1.2.	Diametral dimension between / over pins	77
5.1.3.	No go sector gauges	78
5.1.4.	Diametral dimension over / between balls	78
5.1.5.	Circumferential backlash	79
5.2. Dif	ferent inspection results	81
5.2.1.	Measurement of the base tangent length	81
5.2.2.	Dimension over / between pins	81
5.3. No	go sector gauges	83
5.4. Dir	nension over / between balls	85
5.5. Cir	cumferential backlash	87
5.6. Sta	atistical Tolerance Limit STA	89
5.6.1.	Statistical actual tolerance limit	89
5.7. Ins	pecting the effective size	94
5.7.1.	Go gauges	94
5.7.2.	Circumferential backlash measuring instruments	94
5.7.3.	Composite no go gauges	95
5.7.4.	Inspecting individual form deviations	95
5.8. Dif	ferent inspection results	96
5.8.1.	Go gauges	96
5.8.2.	Circumferential backlash measuring instruments	96
5.8.3.	Composite no go gauges	96
5.8.4.	Inspecting individual form deviations	96

6. Inspection Instruments Actual and Effective (formerly OFS 05)	99
 6.1. Composite go gauges and sector no go gauges 6.2. Measuring pins and gauge blocks 6.3. Measuring pins and micrometer 6.4. Disc micrometer to measure base tangent length 6.5. Spline measuring instruments, rocking type 6.6. Measuring instruments with face stop 6.7. Circumferential backlash measuring instruments, sector type 6.8. Circumferential backlash measuring instruments, composite type 6.9. 2-point measuring instruments with guiding profile 1x1 6.10. Multipoint measuring device with guiding profile nx2 6.11. Multipoint measuring device with guiding profile nx2, dynamic type 6.12. Automation of multipoint measuring devices 6.13. Rotation measuring instruments 	99 100 100 101 102 103 104 105 106 107 108 109
7. Effective Fit Clearance (formerly OFS 03)	110
8. Tolerance Limits of the Effective Circumferential Backlash (form OFS 18)	nerly 117
 8.1. Standard tolerancing method 8.2. Tolerancing method 'Alternative A' 8.3. Tolerancing method 'Alternative B' 	117 120 125
9. Check Plug Gauges for Go Ring Gauges (formerly OFD 03)	127
9.1. Function9.2. Inspection of ring gauges – as new condition	127 128
 9.2.1. Influence of profile form and tooth trace 9.2.2. Influence of pitch deviations 9.2.3. Dispersion in the case of ring gauges 9.2.4. Dispersion in the case of check plug gauges 	128 130 131 132
9.3. Wear test for ring gauges	133
10. Helical Splines (formerly OFS 14)	137
10.1. Spline data with helix angle10.2. Quality inspection10.3. Gauge calculations for test items with helix angle	144 146 148
Table of Illustrations	151
Bibliography	154

1. Spline Basics (formerly OFL 01)

Many different types of gears and splines are required in engineering applications. It is difficult to replace toothed components even though their manufacture is expensive and they are subject to wear. Transmissions with gears are required for two very simple reasons:

- a) Motors have an unfavourable ratio between torque and speed.
- b) Installation conditions cannot be changed constructively at will.

The increasing number of motor-driven motions does not lead to a decrease in the number of splines used, but rather to an increase.

In principle, there are two common types of gearing: gears and splines.

1.1. The function of Gears

Gears always transmit torque from one axis to another. This is achieved by means of direct or indirect contact via chains or drive belts and is usually combined with a speed change. Examples are spur gears, bevel gears, worm wheels, chain wheels and timing belt pulleys.

Fig 1: Spur gear pair

There are standards, literature, lectures at universities, seminars, software packages and specialists for all the different types of gears.

There is, however, very little information available on splines. This book therefore concentrates on splines in particular.

1.2. The function of Splines

Unlike gears, splines are exclusively used to transmit torque on the same axis. As with gearboxes there are, in principle, only two reasons why splines are required:

- a) The driven component must have the ability to slide on the driving component.
- b) Torque transmission components must be separated due to their manufacture or installation.

Manual transmissions and clutches are examples of a).

Drives and steering mechanisms are examples of b).

The main requirement of splines is to safely transmit torque. Little backlash, good centering, low noise, little wear and usually small axial forces are also desired. A combination of these requirements is very demanding and usually leads to a geometric over-determination.

Requirement and design specification depend on the individual type of application, which is why there are many names for these form-fitting connections:

- Plug-in toothing
- Clutch spline
- Straight-sided splines
- Splined shafts and splined hubs
- Sliding profiles
- Short gearing
- Serrated shafts and hubs

"Spline" is the generic term for all interlocking profile types mentioned above. Face gearing, which in some respects has similar functions, is excluded from this and must be kept separate from splines. It also transmits torque on one axis; however it cannot be slid on and requires an additional axial force of pressure.

